95 research outputs found

    On Granger-causality and the effect of interventions in time series

    Get PDF
    We combine two approaches to causal reasoning. Granger-causality, on the one hand, is popular in fields like econometrics, where randomised experiments are not very common. Instead information about the dynamic development of a system is explicitly modelled and used to define potentially causal relations. On the other hand, the notion of causality as effect of interventions is predominant in fields like medical statistics or computer science. In this paper, we consider the effect of external, possibly multiple and sequential, interventions in a system of multivariate time series, the Granger-causal structure of which is taken to be known. We address the following questions: under what assumptions about the system and the interventions does Granger-causality inform us about the effectiveness of interventions, and when does the possibly smaller system of observable times series allow us to estimate this effect? For the latter we derive criteria that can be checked graphica lly and are in the same spirit as Pearl''s back-door and front-door criteria (Pearl 1995).econometrics;

    Graphical Models for Inference Under Outcome-Dependent Sampling

    Full text link
    We consider situations where data have been collected such that the sampling depends on the outcome of interest and possibly further covariates, as for instance in case-control studies. Graphical models represent assumptions about the conditional independencies among the variables. By including a node for the sampling indicator, assumptions about sampling processes can be made explicit. We demonstrate how to read off such graphs whether consistent estimation of the association between exposure and outcome is possible. Moreover, we give sufficient graphical conditions for testing and estimating the causal effect of exposure on outcome. The practical use is illustrated with a number of examples.Comment: Published in at http://dx.doi.org/10.1214/10-STS340 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Identifying the consequences of dynamic treatment strategies: A decision-theoretic overview

    Full text link
    We consider the problem of learning about and comparing the consequences of dynamic treatment strategies on the basis of observational data. We formulate this within a probabilistic decision-theoretic framework. Our approach is compared with related work by Robins and others: in particular, we show how Robins's 'G-computation' algorithm arises naturally from this decision-theoretic perspective. Careful attention is paid to the mathematical and substantive conditions required to justify the use of this formula. These conditions revolve around a property we term stability, which relates the probabilistic behaviours of observational and interventional regimes. We show how an assumption of 'sequential randomization' (or 'no unmeasured confounders'), or an alternative assumption of 'sequential irrelevance', can be used to infer stability. Probabilistic influence diagrams are used to simplify manipulations, and their power and limitations are discussed. We compare our approach with alternative formulations based on causal DAGs or potential response models. We aim to show that formulating the problem of assessing dynamic treatment strategies as a problem of decision analysis brings clarity, simplicity and generality.Comment: 49 pages, 15 figure

    Assumptions of IV Methods for Observational Epidemiology

    Full text link
    Instrumental variable (IV) methods are becoming increasingly popular as they seem to offer the only viable way to overcome the problem of unobserved confounding in observational studies. However, some attention has to be paid to the details, as not all such methods target the same causal parameters and some rely on more restrictive parametric assumptions than others. We therefore discuss and contrast the most common IV approaches with relevance to typical applications in observational epidemiology. Further, we illustrate and compare the asymptotic bias of these IV estimators when underlying assumptions are violated in a numerical study. One of our conclusions is that all IV methods encounter problems in the presence of effect modification by unobserved confounders. Since this can never be ruled out for sure, we recommend that practical applications of IV estimators be accompanied routinely by a sensitivity analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS316 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • ā€¦
    corecore